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A method for numerical integration of a nonlinear, singular integro-partial differential 
equation is presented. The method consists in evaluating the singular integral by a least- 
squares approximation technique. A predictorcorrector formula is employed to integrat- 
the ordinary differential equations obtained after the spatial discretization of the partial 
integrodifferential operator. Results of the procedure developed are compared with those 
obtained with the Newton-Gregory formula for evaluating the integral. Numerical re- 
sults are presented to illustrate the effectiveness and accuracy of the algorithm. The 
influence of parameters in the equation on the behavior of the algorithm is discussed. 

INTRODUCTION 

Nonlinear integral equations frequently arise in physical problems and, except 
for isolated instances, must be solved numerically. Noble [l] reviewed numerical 
solution methods for nonlinear integral equations. Although an exhaustive 
literature is available on numerical solution of ordinary and partial differential 
equations [2], this situation does not exist for nonlinear integrodifferential opera- 
tors, especially when partial derivatives are present. The present study describes 
a numerical integration technique developed for a nonlinear integro-partial 
differential equation which may be extended to equations of the same general 
character. The equation considered is 

af 1 
at=2 [W +h4E,(Y - Y) - 2f4h t> + jYf4W, 0 &(I Y -. Y' I) dy'] (1) 

0 

with the initial condition 

f(v,O) =h. (2) 

The functions E,(x) are exponential integral functions of order IZ [3] and are 
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available only in tabulated form. The parametersf, and Y are specified constants. 
The development of Eq. (1) is given elsewhere [4]. For the present purpose it is 
sufficient to state that Eq. (1) governs the local temperature during transient 
radiative heat transfer in a plane layer of absorbing material bounded by black 
walls. The layer is initially at unit temperature when the lower wall (y = 0) is 
suddenly changed to temperature fi while the upper wall (v = Y) is maintained 
at the initial temperature. In this application f(y, t) denotes dimensionless local 
temperature, y and t are dimensionless space and time variables, and Y is the 
optical thickness of the layer. 

Numerical solution to Eq. (1) is complicated by the fact that the kernel of the 
integral &(I y - y’ I) is singular at the origin although the integral exists and is 
finite. In principle the initial value problem represented by Eq. (1) with the initial 
condition of Eq. (2) can be integrated to steady state (t---f co) where transient 
effects vanish identically in a manner analogous to parabolic differential equations. 
In the latter case, however, theoretical results are available [5] for selecting incre- 
ments in the independent variables which assure stability and convergence of the 
numerical integration process. No such results are apparently available for integra- 
tion of equations of the type considered here. It is reasonable to expect, however, 
that a stable difference method for integrating the differential equation is suitable 
provided an accurate quadrature rule is chosen to evaluate the integral. Thus, 
integration of Eq. (1) is considered in two parts. First, techniques for the evaluation 
of the singular integral are described. An approximation for the time derivative 
is then discussed. Finally, numerical results are presented illustrating the application 
and accuracy of the method developed. 

NUMERICAL EVALUATION OF A SINGULAR INTEGRAL 

Noble [l] has considered the evaluation of singular integrals treating them as 
Cauchy principal-value integrals using methods of interpolation and approxima- 
tion. 

The first method divides the range of integration into three subintervals, with 
one of them containing the singularity and the other two free from it. The integra- 
tion over the latter two can be performed by a standard interpolative scheme. 
The former can be evaluated by expanding f4(y’, t) in a Taylor’s series around y 
and the resulting integrals are evaluated in closed form in terms of E, . 

This method is not attractive for integrating Eq. (1). However, limited calcula- 
tions were performed for Y = 1 using the Newton-Gregory formula. The method 
was found unsatisfactory in regard to the amount of computer time required to 
achieve acceptable accuracy, even with as many as 200 spatial approximation 
points. It may be mentioned that the Newton-Gregory formula uses available 
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values of the function at the approximation points, thus avoiding interpolation 
among the points. Some numerical results in this connection are cited later. 

Approximation methods represent the function f4(y’, t) by a finite expansion 
in terms of elementary functions. Since moments of E, functions are simple to 
evaluate, it is convenient to use polynomials orthogonal over the set of approxima- 
tion points. Thus, the function f”(~, t) is approximated as 

f”(.Y, t) = i- Jw)Pi(.Y), (3) 
i-0 

where pi( JJ) is the polynomial of order j in the space variable y. The time-dependent 
coefficients B,(t) can be calculated by a least-squares procedure. The smoothing 
properties of this procedure tend to reduce the influence of small errors introduced 
at any step of the integration process on subsequent results. For Y around 1 the 
number of approximation points required is about one third of the points needed 
for the quadrature method discussed earlier. This leads to a considerable reduction 
in computation time required to integrate Eq. (1). 

The orthogonal polynomials were constructed by adapting an algorithm given 
by Anderson [6] to the discrete situation. Double precision arithmetic was employed 
to minimise the adverse round-off properties of the algorithm. To promote speed 
and accuracy of computation, the interval of integration in Eq. (1) was normalized 
to (-0.5,0.5) and the approximation points were chosen symmetric with respect 
to zero, with the result that all odd-power coefficients for even-degree polynomials 
and all even-power coefficients for odd-degree polynomials vanish. By this proce- 
dure it was possible to generate polynomials orthogonal to within IO-l6 for orders 
up to 25 and number of approximation points up to 200, when care was taken 
to adjust the value of the inner product (pi , pi) to unity. The least-squares approxi- 
mation was generated by a method suggested by Forsythe [7]. Though the assump- 
tions of the above work are not truly valid in the present case, it was found that 
its use produced better approximations than a test for small error norm. For all 
approximations generated, polynomials of degree higher than 15 were found 
unnecessary since the error vector variance, c?, varied slowly for higher degree 
polynomials and was usually between 1O-5 and lo-*. Since the approximation 
was used for quadrature purposes, this order of accuracy was considered adequate. 

Spatial discretization of Eq. (1) and subsequent use of the polynomial approxi- 
mation yields 

df cn) - = ; [E,(Yn) +“f14J%y - Yn) + ?to 4(t) h - 2w”w)4], dt (4) 

P(O) = fi (n = 0, 1, 2 )..., N), (5) 
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where the f(*) are the discrete approximations to f over the set of space points 
yn (n = 0, I, 2 ,..., N) and 

= i Aij IO’ yriJm Yn - Y’ I) dY’- 
i=O 

The pj are the polynomials discussed earlier and the Aij are the coefficients of 
these polynomials. Note that for a selected distribution of approximation points, 
degree of approximation [i.e., k in Eq. (3)], and Y, the &,, may be calculated 
independently of the integration procedure for Eq. (4), which is in contrast to the 
repetitive calculation required for the interpolative method. 

NUMERICAL INTEGRATION METHOD 

The system given in Eq. (4) is a set of ordinary simultaneous differential equations 
with initial conditions prescribed by Eq. (5). They were integrated using a fourth- 
order predictor-corrector formula due to Hamming [8]. 

The convergence rate of the corrector formula determines the computation 
time and is governed by the nature of the function on the right side of Eq. (4). 
In the present application the behavior of this function is strongly determined 
by the kernel &(I y - y’ I), which is singular at y = y’ and decreases exponentially 
with increasing y - y’. The mode of convergence is strongly dependent on a 
‘characteristic width’ (X) of the kernel function. For large h (corresponding to 
small Y) a strong global coupling exists among all fen) values while for small h 
(large Y) there is principally only a local coupling among f(la) values. For small h 
the ordinary iterative scheme tends to become ill-conditioned. Complete discussion 
of this problem and alternative iterative schemes has been given by Anderson [9]. 
For the present problem the ill-conditioning attains significant proportions for Y 
larger than three or four. This behavior thus places an additional restriction on 
the choice of the value for the time increment and, in general, it is necessary to 
exercise caution when step lengths are changed during integration. 

The time increment was chosen so that corrector iterations were generally 
limited to two and decreased on the basis of truncation error which registered 
an automatic increase in situations where corrector convergence was poor. The 
step length was increased principally on the basis of the physical requirement that 
after some time the local temperature variation with time decreases, enabling 
larger time steps to be employed, and not on the basis of truncation error which 
is the customary criterion in the case of ordinary differential equations. 
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The starting values for the predictor-corrector formula were obtained by a 
fourth-order Runge-Kutta procedure. Integration was terminated by appealing 
to the physical situation at steady state (as t -+ co). At steady state the function 
f( y, t), nondimensionalized as 

f J4 -.fi” 
1 -fi4’ 

satisfies 

f($ = 1 -f(l -+j. (7) 

The validity of Eq. (7) may be demonstrated by substituting it into Eq. (1) after 
the time derivative is set to zero. It follows that f(0.5) = 0.5. The integration 
procedure was terminated whenj(0.5) was within 0.01 % of this value. The quality 
of the integration procedure can be gauged by another physical fact. At steady 
state the radiative flux which is the integral of the right side of Eq. (1) over the 
space coordinate must be uniform. 

RESULTS AND DISCUSSION 

Because of the complex nature of Eq. (1) and the approximations involved, 
mathematical analysis to establish the convergence, stability, and error bounds 
for the numerical scheme was not attempted. Instead, independent error estimates 
for the integration of the system expressed by Eq. (4) with Eq. (5) and the least- 
squares approximation were obtained [7, 81. A summary of typical error estimates 
obtained during integration is shown in Table I. 

The ad hoc procedure of halving the time interval was adopted to investigate 
convergence of the procedure. Stability of the method was established by study 
of the extent to which the results satisfied the physical requirement that radiative 
flux be uniform in [0, Y] at steady state (t -+ 03). Typical steady state flux results 
are presented in Tables II and III for the algorithm developed as well as some of 
those obtained using the Newton-Gregory formula. For identical parameter 
values, the least-squares procedure yields uniformity of flux to four significant 
figures. Results obtained using the Newton-Gregory formula are satisfactory to 
only two significant figures with errors for the boundary surface flux exceeding 5 %. 
Physically the boundary fluxes are important quantities obtained from the calcula- 
tion. It may also be noted that the number of approximation points used for the 
least-squares method is 21, while 101 were required for the Newton-Gregory 
formula. This situation permits a small time increment to be used at early time 
in the least-squares method. Such small step lengths are prohibitively time con- 
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TABLE I 

Typical Error Estimates During Integration (Y = O.l,fi = 0.5) 

Step 
I length 

0.060 0.010 

1.130 0.020 

3.670 0.040 

7.71 

14.35 

0.080 

0.160 

Y/Y 

0.00 
0.25 
0.50 
0.75 
1.00 

0.00 
0.25 
0.50 
0.75 
1.00 

0.00 
0.25 
0.50 
0.75 
1.00 

0.00 
0.25 
0.50 
0.75 
1.00 

0.00 
0.25 
0.50 
0.75 
1.00 

Degree of Variance 
polynomial (x 108) 

Number of Truncation 
corrector error 
iterations (x 108) 

6 0.56 2 
-6.5 
-1.2 
-0.44 
+0.33 
+5.7 

15 8.0 
-0.44 
-0.44 
-0.44 
-0.22 
-0.33 

15 52.0 
-0.55 
-0.33 
-0.44 
-0.33 
-0.44 

15 140.0 
-0.55 
-0.44 
-0.39 
-0.39 
-0.33 

15 380.0 
-0.55 
-0.44 
-0.44 
-0.33 
-0.39 

Note : 1. Number of approximation points = 81. 
2. Highest degree of polynomial employed = 15. 
3. Step length was increased every hundred steps. 

suming with the Newton-Gregory formula. The latter calculation procedure was 
found to be at least 10 to 20 times slower than that required in the least-squares 
method. In both integration methods step length was increased during the integra- 
tion. 
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TABLE II 
Flux Distribution Obtained by Using Least-Squares Approximations (Y = 1.0, fi = 213) 

t 

Y/Y 3.030 4.070 6.510 9.070 

0.0 0.117270 0.113263 0.111210 0.111032 
0.1 0.116586 0.113038 0.111217 0.111042 
0.2 0.115685 0.112733 0.111179 0.111041 
0.3 0.114612 0.112355 0.111158 0.111037 
0.4 0.113313 0.111914 0.111115 0.111035 
0.5 0.111866 0.111409 0.111064 0.111031 
0.6 0.110336 0.110856 0.111023 0.111028 
0.7 0.108720 0.110258 0.110974 0.111025 
0.8 0.107050 0.109637 0.110908 0.111020 
0.9 0.105460 0.109013 0.110861 0.111014 
1.0 0.104000 0.108426 0.110780 0.110998 

Note : 1. Number of approximation points = 21. 
2. Maximum degree of polynomial employed = 15. 
3. Time increment = 0.01. 

TABLE III 
Flux Distribution Obtained by Using the Newton-Gregory Formula 

(Y = 1.0, f; = 2/3, h = 0.01) 

t 

Yi y 3.000 4.100 6.500 9.300 

0.0 0.116626 0.112194 0.110135 0.10994 
0.1 0.113937 0.109525 0.108073 0.107897 
0.2 0.114022 0.110336 0.109117 0.108967 
0.3 0.113879 0.111348 0.110591 0.109995 
0.4 0.113475 0.111883 0.111955 0.110979 
0.5 0.112856 0.112311 0.112803 0.111919 
0.6 0.112058 0.112640 0.113604 0.112816 
0.7 0.111127 0.112880 0.113987 0.113669 
0.8 0.110119 0.113049 0.114359 0.114080 
0.9 0.109108 0.113172 0.115072 0.114870 
1.0 0.108210 0.113304 0.115764 0.115998 

Note: 1. Differences up to fourth order were retained in the quadrature formula. 
2. In the Taylor expansion for f4(y’, t) for evaluation of the integral around the singular 

point, derivatives up to third order were retained. 
3. Time increment = 0.05. 
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The degree of instability in the least-squares procedure can be established 
readily by forming difference tables for j. Table IV presents typical differences 
up to third order at large times for Y = 1 .O, fi = 0.5, and three values of y/Y 
(0,0.5, and 1.0). The tabular results indicate that the instability is of the order of 
few digits in the fifth significant figure and thus assures results accurate to four 
significant figures. 

TABLE IV 

Large Time Difference Tables (Y = I .O, fi = 0.5) 

y/Y = 0.0 y/Y = 0.5 y/Y = 1.0 

t j A AZ A3 3 A 42 43 3 A A2 A3 

3.87 0.73672 
543 

4.19 0.74215 
420 

4.51 0.74635 
324 

4.83 0.74959 
251 

5.15 0.75210 
193 

5.47 0.75403 
149 

5.79 0.75552 
116 

6.11 0.75668 
89 

6.43 0.75757 
70 

6.75 0.75827 
54 

7.07 0.75881 
43 

7.39 0.75924 
35 

7.71 0.75959 

0.44616 

123 0.45903 
27 

96 0.46891 
23 

73 0.47647 
15 

58 0.48223 
14 

44 0.48661 
11 

33 0.48994 
6 

27 0.49247 
8 

19 0.49438 
3 

16 0.49583 
5 

11 0.49692 
3 

8 0.49775 

0.49838 

1287 
299 

988 
232 

756 
180 

576 
138 

438 
105 

333 
80 

253 
62 

191 
46 

145 
36 

109 
26 

83 
20 

63 

67 

52 

42 

33 

25 

18 

16 

10 

10 

6 

0.19449 

0.20441 

0.21249 

0.21897 

0.22409 

0.22808 

0.23117 

0.23354 

0.23534 

0.23671 

0.23774 

0.23851 

0.23908 

992 
184 

808 24 
160 

648 24 
136 

512 23 
113 

399 23 
90 

309 18 
12 

237 15 
57 

180 14 
43 

137 9 
34 

103 8 
26 

17 6 
20 

57 

Available steady-state results [IO] for f were compared with the present results 
providing an additional check on the calculations. It should be pointed out that 
under steady conditions Eq. (1) simplifies to a linear integral equation in f4(y, t). 
The reported results are shown in Table V for three values of Y. Errors are 
generally of the order of 1% and less. 
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It is appropriate at this stage to comment on the influence of f1 and Y on the 
integration. In general there is a need for increasing the number of approximation 
points as Y is increased or fi is reduced (0 < Y < co, 0 < fi < 1). With the 
number of approximation points 80 or less, it is possible to carry out the integration 
for Y < 2 for ally, . As a rule, it is possible to manage with even fewer approxima- 
tion points for these situations provided a smaller time step is chosen. However, 
choice of too small a time step leads to an undesirable buildup of round-off errors, 
particularly for Y > 1, since a large number of steps is required to attain steady 
state. The optimum step length and the number of approximation points were 
chosen empirically. 

TABLE V 

Comparison of Steady-State Temperature Distributions 

Y 0.1 1.0 10.0 

Y/Y 

Heaslet- 
Warming 

WI 
Present 

study 

Heaslet- 
Warming 

WI 
Present 

study 

Heaslet- 
Warming 

ll21 
Present 

study 

0.0 0.571 0.571 0.756 0.760 0.956 0.949 
0.1 0.556 0.554 0.698 0.692 0.854 0.851 
0.2 0.541 0.539 0.646 0.642 0.765 0.763 
0.3 0.525 0.526 0.590 0.594 0.678 0.675 
0.4 0.513 0.512 0.551 0.545 0.590 0.587 
0.5 0.500 0.499 0.500 0.499 0.500 0.499 
0.6 0.487 0.486 0.449 0.452 0.410 0.412 
0.7 0.475 0.473 0.410 0.405 0.322 0.324 
0.8 0.459 0.460 0.354 0.355 0.235 0.236 
0.9 0.444 0.446 0.302 0.305 0.146 0.148 
1.0 0.429 0.428 0.244 0.240 0.044 0.050 

The procedure developed is not very satisfactory for large Y, say around 10. 
In such situations, the kernel function tends to reproduce the function at points 
distant from the boundaries and the forcing function {E,(y) +fi4E,( Y - y)> 
strongly influences only points close to the boundary. The least-squares approxi- 
mation produces erratic results in such cases at “early times” and the errors 
introduced tend to grow with time. This presents a formidable obstacle for the 
integration. However, the integration can be carried out satisfactorily by using 
the following procedure. It is assumed that the least-squares fit produces adequate 
accuracy for f in the region 0 < y/Y < 0.6. Near this point the value of the right 
side of Eq. (1) tends to be negative, which is physically absurd. For larger values 
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of y/Y, the function f was maintained at its initial value. As integration proceeds, 
this “cut-off” point gradually moved toward the boundary, y/Y = 1. Once the 
“cut-off” point reached the boundary integration progressed smoothly. Due to 
the ill-conditioning of the iterative process of the corrector, the size of the time 
step is severely restricted. This sometimes gives a large buildup of round-off errors. 

CONCLUSION 

A numerical method of solution for a nonlinear, integropartial differential 
equation with a singular kernel has been presented. The technique uses least- 
squares approximation for the function within the integral operator to reduce the 
equation to a system of ordinary differential equations. Hamming’s predictor- 
corrector formula is employed to solve the differential equation system. Although 
considerable information of an experimental nature has been obtained on the 
effectiveness of the solution method in handling problems of the class considered 
here, further study of the technique should be initiated to fully explore the potential 
of the technique. In particular more information concerning the relation between 
the error in the least-squares approximation and the behavior of the predictor- 
corrector formula is needed. 
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